\(\int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [1076]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 180 \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {2 \left (a^2 B-b^2 B+2 a b (A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \left (6 a b B+b^2 (3 A+C)+a^2 (A+3 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a (4 A b+3 a B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

-2*(B*a^2-B*b^2+2*a*b*(A-C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1
/2))/d+2/3*(6*B*a*b+b^2*(3*A+C)+a^2*(A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2
*d*x+1/2*c),2^(1/2))/d+2/3*A*(a+b*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/3*a*(4*A*b+3*B*a)*sin(d*x+c)/d
/cos(d*x+c)^(1/2)-2/3*b^2*(A-C)*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {3126, 3110, 3102, 2827, 2720, 2719} \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (a^2 (A+3 C)+6 a b B+b^2 (3 A+C)\right )}{3 d}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (a^2 B+2 a b (A-C)-b^2 B\right )}{d}+\frac {2 a (3 a B+4 A b) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b^2 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

[In]

Int[((a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(-2*(a^2*B - b^2*B + 2*a*b*(A - C))*EllipticE[(c + d*x)/2, 2])/d + (2*(6*a*b*B + b^2*(3*A + C) + a^2*(A + 3*C)
)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*(4*A*b + 3*a*B)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]) - (2*b^2*(A -
 C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*A*(a + b*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)
)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \int \frac {(a+b \cos (c+d x)) \left (\frac {1}{2} (4 A b+3 a B)+\frac {1}{2} (3 b B+a (A+3 C)) \cos (c+d x)-\frac {3}{2} b (A-C) \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a (4 A b+3 a B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {4}{3} \int \frac {\frac {1}{4} \left (-4 A b^2-6 a b B-a^2 (A+3 C)\right )+\frac {3}{4} \left (a^2 B-b^2 B+2 a b (A-C)\right ) \cos (c+d x)+\frac {3}{4} b^2 (A-C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a (4 A b+3 a B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {8}{9} \int \frac {-\frac {3}{8} \left (6 a b B+b^2 (3 A+C)+a^2 (A+3 C)\right )+\frac {9}{8} \left (a^2 B-b^2 B+2 a b (A-C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a (4 A b+3 a B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\left (a^2 B-b^2 B+2 a b (A-C)\right ) \int \sqrt {\cos (c+d x)} \, dx-\frac {1}{3} \left (-6 a b B-b^2 (3 A+C)-a^2 (A+3 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {2 \left (a^2 B-b^2 B+2 a b (A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \left (6 a b B+b^2 (3 A+C)+a^2 (A+3 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a (4 A b+3 a B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.28 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.87 \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-6 \left (a^2 B-b^2 B+2 a b (A-C)\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 \left (6 a b B+b^2 (3 A+C)+a^2 (A+3 C)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+12 a A b \sin (c+d x)+6 a^2 B \sin (c+d x)+b^2 C \sin (2 (c+d x))+2 a^2 A \tan (c+d x)}{3 d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[((a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(-6*(a^2*B - b^2*B + 2*a*b*(A - C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 2*(6*a*b*B + b^2*(3*A + C)
+ a^2*(A + 3*C))*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + 12*a*A*b*Sin[c + d*x] + 6*a^2*B*Sin[c + d*x] +
 b^2*C*Sin[2*(c + d*x)] + 2*a^2*A*Tan[c + d*x])/(3*d*Sqrt[Cos[c + d*x]])

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.14 (sec) , antiderivative size = 768, normalized size of antiderivative = 4.27

method result size
parts \(\text {Expression too large to display}\) \(768\)
default \(\text {Expression too large to display}\) \(1301\)

[In]

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2*(2*A*a*b+B*a^2)*(-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2
*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2
*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+2*(B*b^2+2*C*a*b)*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2
*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/
2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/
d+2*(A*b^2+2*B*a*b+C*a^2)/d*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))-2/3*A*a^2*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-2*sin(1/2*d*x+1/2*
c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/
2*c),2^(1/2)))*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(3/2)/sin(1/2*d*x+1/2*c)/d-2/3*C*b^2*((-1+2*cos(1/2*d*x+1/2*c)^2)*s
in(1/2*d*x+1/2*c)^2)^(1/2)*(4*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c
)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.62 \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-i \, {\left (A + 3 \, C\right )} a^{2} - 6 i \, B a b - i \, {\left (3 \, A + C\right )} b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, {\left (A + 3 \, C\right )} a^{2} + 6 i \, B a b + i \, {\left (3 \, A + C\right )} b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (i \, B a^{2} + 2 i \, {\left (A - C\right )} a b - i \, B b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-i \, B a^{2} - 2 i \, {\left (A - C\right )} a b + i \, B b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (C b^{2} \cos \left (d x + c\right )^{2} + A a^{2} + 3 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-I*(A + 3*C)*a^2 - 6*I*B*a*b - I*(3*A + C)*b^2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*
x + c) + I*sin(d*x + c)) + sqrt(2)*(I*(A + 3*C)*a^2 + 6*I*B*a*b + I*(3*A + C)*b^2)*cos(d*x + c)^2*weierstrassP
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(I*B*a^2 + 2*I*(A - C)*a*b - I*B*b^2)*cos(d*x + c)^2
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(-I*B*a^2 - 2*I
*(A - C)*a*b + I*B*b^2)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(
d*x + c))) + 2*(C*b^2*cos(d*x + c)^2 + A*a^2 + 3*(B*a^2 + 2*A*a*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x +
c))/(d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**2*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 4.59 (sec) , antiderivative size = 268, normalized size of antiderivative = 1.49 \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {C\,b^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,A\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,b^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,B\,a\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,C\,a\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {4\,A\,a\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((a + b*cos(c + d*x))^2*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(5/2),x)

[Out]

(C*b^2*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (2*A*b^2*ellipticF(c/2
 + (d*x)/2, 2))/d + (2*B*b^2*ellipticE(c/2 + (d*x)/2, 2))/d + (2*C*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (4*B*a
*b*ellipticF(c/2 + (d*x)/2, 2))/d + (4*C*a*b*ellipticE(c/2 + (d*x)/2, 2))/d + (2*A*a^2*sin(c + d*x)*hypergeom(
[-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*a^2*sin(c + d*x)*hyp
ergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (4*A*a*b*sin(c + d*x
)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))